Papers
Topics
Authors
Recent
2000 character limit reached

The Performance of Compression-Based Denoisers (2512.14539v1)

Published 16 Dec 2025 in cs.IT

Abstract: We consider a denoiser that reconstructs a stationary ergodic source by lossily compressing samples of the source observed through a memoryless noisy channel. Prior work on compression-based denoising has been limited to additive noise channels. We extend this framework to general discrete memoryless channels by deliberately choosing the distortion measure for the lossy compressor to match the channel conditional distribution. By bounding the deviation of the empirical joint distribution of the source, observation, and denoiser outputs from satisfying a Markov property, we give an exact characterization of the loss achieved by such a denoiser. Consequences of these results are explicitly demonstrated in special cases, including for MSE and Hamming loss. A comparison is made to an indirect rate-distortion perspective on the problem.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube