Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Universal Denoising of Discrete-time Continuous-Amplitude Signals (0807.3396v1)

Published 22 Jul 2008 in cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We consider the problem of reconstructing a discrete-time signal (sequence) with continuous-valued components corrupted by a known memoryless channel. When performance is measured using a per-symbol loss function satisfying mild regularity conditions, we develop a sequence of denoisers that, although independent of the distribution of the underlying clean' sequence, is universally optimal in the limit of large sequence length. This sequence of denoisers is universal in the sense of performing as well as any sliding window denoising scheme which may be optimized for the underlying clean signal. Our results are initially developed in a`semi-stochastic'' setting, where the noiseless signal is an unknown individual sequence, and the only source of randomness is due to the channel noise. It is subsequently shown that in the fully stochastic setting, where the noiseless sequence is a stationary stochastic process, our schemes universally attain optimum performance. The proposed schemes draw from nonparametric density estimation techniques and are practically implementable. We demonstrate efficacy of the proposed schemes in denoising gray-scale images in the conventional additive white Gaussian noise setting, with additional promising results for less conventional noise distributions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.