Papers
Topics
Authors
Recent
2000 character limit reached

The PPKN Gate: An Optimal 1-Toffoli Input-Preserving Full Adder for Quantum Arithmetic

Published 12 Dec 2025 in quant-ph and cs.ET | (2512.12073v1)

Abstract: Efficient arithmetic operations are a prerequisite for practical quantum computing. Optimization efforts focus on two primary metrics: Quantum Cost (QC), determined by the number of non-linear gates, and Logical Depth, which defines the execution speed. Existing literature identifies the HNG gate as the standard for Input-Preserving Reversible Full Adders. HNG gate typically requires a QC of 12 and a logical depth of 5, in the area of classical reversible circuits. This paper proposes the PPKN Gate, a novel design that achieves the same inputpreserving functionality using only one Toffoli gate and five CNOT gates. With a Quantum Cost of 10 and a reduced logical depth of 4, the PPKN gate outperforms the standard HNG gate in both complexity and speed. Furthermore, we present a modular architecture for constructing an n-bit Ripple Carry Adder by cascading PPKN modules.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.