Papers
Topics
Authors
Recent
2000 character limit reached

GAINS: Gaussian-based Inverse Rendering from Sparse Multi-View Captures (2512.09925v1)

Published 10 Dec 2025 in cs.CV

Abstract: Recent advances in Gaussian Splatting-based inverse rendering extend Gaussian primitives with shading parameters and physically grounded light transport, enabling high-quality material recovery from dense multi-view captures. However, these methods degrade sharply under sparse-view settings, where limited observations lead to severe ambiguity between geometry, reflectance, and lighting. We introduce GAINS (Gaussian-based Inverse rendering from Sparse multi-view captures), a two-stage inverse rendering framework that leverages learning-based priors to stabilize geometry and material estimation. GAINS first refines geometry using monocular depth/normal and diffusion priors, then employs segmentation, intrinsic image decomposition (IID), and diffusion priors to regularize material recovery. Extensive experiments on synthetic and real-world datasets show that GAINS significantly improves material parameter accuracy, relighting quality, and novel-view synthesis compared to state-of-the-art Gaussian-based inverse rendering methods, especially under sparse-view settings. Project page: https://patrickbail.github.io/gains/

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.