Full-Stack Alignment: Co-Aligning AI and Institutions with Thick Models of Value (2512.03399v1)
Abstract: Beneficial societal outcomes cannot be guaranteed by aligning individual AI systems with the intentions of their operators or users. Even an AI system that is perfectly aligned to the intentions of its operating organization can lead to bad outcomes if the goals of that organization are misaligned with those of other institutions and individuals. For this reason, we need full-stack alignment, the concurrent alignment of AI systems and the institutions that shape them with what people value. This can be done without imposing a particular vision of individual or collective flourishing. We argue that current approaches for representing values, such as utility functions, preference orderings, or unstructured text, struggle to address these and other issues effectively. They struggle to distinguish values from other signals, to support principled normative reasoning, and to model collective goods. We propose thick models of value will be needed. These structure the way values and norms are represented, enabling systems to distinguish enduring values from fleeting preferences, to model the social embedding of individual choices, and to reason normatively, applying values in new domains. We demonstrate this approach in five areas: AI value stewardship, normatively competent agents, win-win negotiation systems, meaning-preserving economic mechanisms, and democratic regulatory institutions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.