Papers
Topics
Authors
Recent
2000 character limit reached

Masking Matters: Unlocking the Spatial Reasoning Capabilities of LLMs for 3D Scene-Language Understanding (2512.02487v1)

Published 2 Dec 2025 in cs.CV and cs.AI

Abstract: Recent advances in 3D scene-language understanding have leveraged LLMs for 3D reasoning by transferring their general reasoning ability to 3D multi-modal contexts. However, existing methods typically adopt standard decoders from language modeling, which rely on a causal attention mask. This design introduces two fundamental conflicts in 3D scene understanding: sequential bias among order-agnostic 3D objects and restricted object-instruction attention, hindering task-specific reasoning. To overcome these limitations, we propose 3D Spatial Language Instruction Mask (3D-SLIM), an effective masking strategy that replaces the causal mask with an adaptive attention mask tailored to the spatial structure of 3D scenes. Our 3D-SLIM introduces two key components: a Geometry-adaptive Mask that constrains attention based on spatial density rather than token order, and an Instruction-aware Mask that enables object tokens to directly access instruction context. This design allows the model to process objects based on their spatial relationships while being guided by the user's task. 3D-SLIM is simple, requires no architectural modifications, and adds no extra parameters, yet it yields substantial performance improvements across diverse 3D scene-language tasks. Extensive experiments across multiple benchmarks and LLM baselines validate its effectiveness and underscore the critical role of decoder design in 3D multi-modal reasoning.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.