LLM-as-a-Judge for Scalable Test Coverage Evaluation: Accuracy, Operational Reliability, and Cost (2512.01232v1)
Abstract: Assessing software test coverage at scale remains a bottleneck in QA pipelines. We present LLM-as-a-Judge (LAJ), a production-ready, rubric-driven framework for evaluating Gherkin acceptance tests with structured JSON outputs. Across 20 model configurations (GPT-4, GPT-5 with varying reasoning effort, and open-weight models) on 100 expert-annotated scripts over 5 runs (500 evaluations), we provide the first comprehensive analysis spanning accuracy, operational reliability, and cost. We introduce the Evaluation Completion Rate (ECR@1) to quantify first-attempt success, revealing reliability from 85.4% to 100.0% with material cost implications via retries. Results show that smaller models can outperform larger ones: GPT-4o Mini attains the best accuracy (6.07 MAAE), high reliability (96.6% ECR@1), and low cost ($1.01 per 1K), yielding a 78x cost reduction vs. GPT-5 (high reasoning) while improving accuracy. Reasoning effort is model-family dependent: GPT-5 benefits from increased reasoning (with predictable accuracy-cost tradeoffs), whereas open-weight models degrade across all dimensions as reasoning increases. Overall, cost spans 175x ($0.45-$78.96 per 1K). We release the dataset, framework, and code to support reproducibility and deployment.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.