Papers
Topics
Authors
Recent
2000 character limit reached

Exact Learning of Arithmetic with Differentiable Agents (2511.22751v1)

Published 27 Nov 2025 in cs.LG and cs.AI

Abstract: We explore the possibility of exact algorithmic learning with gradient-based methods and introduce a differentiable framework capable of strong length generalization on arithmetic tasks. Our approach centers on Differentiable Finite-State Transducers (DFSTs), a Turing-complete model family that avoids the pitfalls of prior architectures by enabling constant-precision, constant-time generation, and end-to-end log-parallel differentiable training. Leveraging policy-trajectory observations from expert agents, we train DFSTs to perform binary and decimal addition and multiplication. Remarkably, models trained on tiny datasets generalize without error to inputs thousands of times longer than the training examples. These results show that training differentiable agents on structured intermediate supervision could pave the way towards exact gradient-based learning of algorithmic skills. Code available at \href{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.