Optimal Foraging in Memory Retrieval: Evaluating Random Walks and Metropolis-Hastings Sampling in Modern Semantic Spaces (2511.12759v1)
Abstract: Human memory retrieval often resembles ecological foraging where animals search for food in a patchy environment. Optimal foraging means following the Marginal Value Theorem (MVT), in which individuals exploit a patch of semantically related concepts until it becomes less rewarding and then switch to a new cluster. While human behavioral data suggests foraging-like patterns in semantic fluency tasks, it remains unclear whether modern high-dimensional embedding spaces provide representations that allow algorithms to match observed human behavior. Using state-of-the-art embeddings and prior semantic fluency data, I find that random walks on these embedding spaces produce results consistent with optimal foraging and the MVT. Surprisingly, introducing Metropolis-Hastings sampling, an adaptive algorithm expected to model strategic acceptance and rejection of new clusters, does not produce results consistent with human behavior. These findings challenge the assumption that more complex sampling mechanisms inherently lead to better cognitive models of memory retrieval. Instead, they show that appropriately structured embeddings, even with simple sampling, can produce near-optimal foraging dynamics. This supports the perspective of Hills (2012) rather than Abbott (2015), demonstrating that modern embeddings can approximate human memory foraging without relying on complex acceptance criteria.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.