Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 191 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

ELEGANCE: Efficient LLM Guidance for Audio-Visual Target Speech Extraction (2511.06288v1)

Published 9 Nov 2025 in cs.SD, cs.CL, cs.MM, and eess.AS

Abstract: Audio-visual target speaker extraction (AV-TSE) models primarily rely on visual cues from the target speaker. However, humans also leverage linguistic knowledge, such as syntactic constraints, next word prediction, and prior knowledge of conversation, to extract target speech. Inspired by this observation, we propose ELEGANCE, a novel framework that incorporates linguistic knowledge from LLMs into AV-TSE models through three distinct guidance strategies: output linguistic constraints, intermediate linguistic prediction, and input linguistic prior. Comprehensive experiments with RoBERTa, Qwen3-0.6B, and Qwen3-4B on two AV-TSE backbones demon- strate the effectiveness of our approach. Significant improvements are observed in challenging scenarios, including visual cue impaired, unseen languages, target speaker switches, increased interfering speakers, and out-of-domain test set. Demo page: https://alexwxwu.github.io/ELEGANCE/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: