Scalable Domain-decomposed Monte Carlo Neutral Transport for Nuclear Fusion (2511.04489v1)
Abstract: EIRENE [1] is a Monte Carlo neutral transport solver heavily used in the fusion community. EIRENE does not implement domain decomposition, making it impossible to use for simulations where the grid data does not fit on one compute node (see e.g. [2]). This paper presents a domain-decomposed Monte Carlo (DDMC) algorithm implemented in a new open source Monte Carlo code, Eiron. Two parallel algorithms currently used in EIRENE are also implemented in Eiron, and the three algorithms are compared by running strong scaling tests, with DDMC performing better than the other two algorithms in nearly all cases. On the supercomputer Mahti [3], DDMC strong scaling is superlinear for grids that do not fit into an L3 cache slice (4 MiB). The DDMC algorithm is also scaled up to 16384 cores in weak scaling tests, with a weak scaling efficiency of 45% in a high-collisional (heavier compute load) case, and 26% in a low-collisional (lighter compute load) case. We conclude that implementing this domain decomposition algorithm in EIRENE would improve performance and enable simulations that are currently impossible due to memory constraints.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.