Papers
Topics
Authors
Recent
2000 character limit reached

Observer-based neural networks for flow estimation and control (2511.02995v1)

Published 4 Nov 2025 in physics.flu-dyn, cs.SY, and eess.SY

Abstract: Neural network observers (NNOs) are proposed for real-time estimation of fluid flows, addressing a key challenge in flow control: obtaining real-time flow states from a limited set of sparse and noisy sensor data. For this task, we propose a generalization of the classical Luenberger observer. In the present framework, the estimation loop is composed of subsystems modeled as neural networks (NNs). By combining flow information from selected probes and an NN surrogate model (NNSM) of the flow system, we train NNOs capable of fusing information to provide the best estimation of the states, that can in turn be fed back to an NN controller (NNC). The NNO capabilities are demonstrated for three nonlinear dynamical systems. First, a variation of the Kuramoto-Sivashinsky (KS) equation with control inputs is studied, where variables are sparsely probed. We show that the NNO is able to track states even when probes are contaminated with random noise or with sensors at insufficient sample rates to match the control time step. Then, a confined cylinder flow is investigated, where velocity signals along the cylinder wake are estimated by using a small set of wall pressure sensors. In both the KS and cylinder problems, we show that the estimated states can be used to enable closed-loop control, taking advantage of stabilizing NNCs. Finally, we present a legacy dataset of a turbulent boundary layer experiment, where convolutional NNs (CNNs) are employed to implement the models required for the estimation loop. We show that, by combining low-resolution noise-corrupted sensor data with an imperfect NNSM, it is possible to produce more accurate estimates, outperforming both the direct reconstructions via specialized super-resolution NNs and the direct model propagation from initial conditions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.