Papers
Topics
Authors
Recent
2000 character limit reached

Measuring the Intrinsic Dimension of Earth Representations

Published 3 Nov 2025 in cs.LG and cs.IT | (2511.02101v1)

Abstract: Within the context of representation learning for Earth observation, geographic Implicit Neural Representations (INRs) embed low-dimensional location inputs (longitude, latitude) into high-dimensional embeddings, through models trained on geo-referenced satellite, image or text data. Despite the common aim of geographic INRs to distill Earth's data into compact, learning-friendly representations, we lack an understanding of how much information is contained in these Earth representations, and where that information is concentrated. The intrinsic dimension of a dataset measures the number of degrees of freedom required to capture its local variability, regardless of the ambient high-dimensional space in which it is embedded. This work provides the first study of the intrinsic dimensionality of geographic INRs. Analyzing INRs with ambient dimension between 256 and 512, we find that their intrinsic dimensions fall roughly between 2 and 10 and are sensitive to changing spatial resolution and input modalities during INR pre-training. Furthermore, we show that the intrinsic dimension of a geographic INR correlates with downstream task performance and can capture spatial artifacts, facilitating model evaluation and diagnostics. More broadly, our work offers an architecture-agnostic, label-free metric of information content that can enable unsupervised evaluation, model selection, and pre-training design across INRs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 9 likes about this paper.