Papers
Topics
Authors
Recent
2000 character limit reached

From Amateur to Master: Infusing Knowledge into LLMs via Automated Curriculum Learning (2510.26336v1)

Published 30 Oct 2025 in cs.CL and cs.AI

Abstract: LLMs excel at general tasks but underperform in specialized domains like economics and psychology, which require deep, principled understanding. To address this, we introduce ACER (Automated Curriculum-Enhanced Regimen) that transforms generalist models into domain experts without sacrificing their broad capabilities. ACER first synthesizes a comprehensive, textbook-style curriculum by generating a table of contents for a subject and then creating question-answer (QA) pairs guided by Bloom's taxonomy. This ensures systematic topic coverage and progressively increasing difficulty. The resulting synthetic corpus is used for continual pretraining with an interleaved curriculum schedule, aligning learning across both content and cognitive dimensions. Experiments with Llama 3.2 (1B and 3B) show significant gains in specialized MMLU subsets. In challenging domains like microeconomics, where baselines struggle, ACER boosts accuracy by 5 percentage points. Across all target domains, we observe a consistent macro-average improvement of 3 percentage points. Notably, ACER not only prevents catastrophic forgetting but also facilitates positive cross-domain knowledge transfer, improving performance on non-target domains by 0.7 points. Beyond MMLU, ACER enhances performance on knowledge-intensive benchmarks like ARC and GPQA by over 2 absolute points, while maintaining stable performance on general reasoning tasks. Our results demonstrate that ACER offers a scalable and effective recipe for closing critical domain gaps in LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.