Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Revisiting the Structure of Trend Premia: When Diversification Hides Redundancy (2510.23150v1)

Published 27 Oct 2025 in q-fin.PR, q-fin.PM, q-fin.RM, q-fin.TR, and stat.ML

Abstract: Recent work has emphasized the diversification benefits of combining trend signals across multiple horizons, with the medium-term window-typically six months to one year-long viewed as the "sweet spot" of trend-following. This paper revisits this conventional view by reallocating exposure dynamically across horizons using a Bayesian optimization framework designed to learn the optimal weights assigned to each trend horizon at the asset level. The common practice of equal weighting implicitly assumes that all assets benefit equally from all horizons; we show that this assumption is both theoretically and empirically suboptimal. We first optimize the horizon-level weights at the asset level to maximize the informativeness of trend signals before applying Bayesian graphical models-with sparsity and turnover control-to allocate dynamically across assets. The key finding is that the medium-term band contributes little incremental performance or diversification once short- and long-term components are included. Removing the 125-day layer improves Sharpe ratios and drawdown efficiency while maintaining benchmark correlation. We then rationalize this outcome through a minimum-variance formulation, showing that the medium-term horizon largely overlaps with its neighboring horizons. The resulting "barbell" structure-combining short- and long-term trends-captures most of the performance while reducing model complexity. This result challenges the common belief that more horizons always improve diversification and suggests that some forms of time-scale diversification may conceal unnecessary redundancy in trend premia.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.