Papers
Topics
Authors
Recent
2000 character limit reached

More Than Memory Savings: Zeroth-Order Optimization Mitigates Forgetting in Continual Learning (2510.21019v1)

Published 23 Oct 2025 in cs.LG and cs.CV

Abstract: Zeroth-order (ZO) optimization has gained attention as a memory-efficient alternative to first-order (FO) methods, particularly in settings where gradient computation is expensive or even impractical. Beyond its memory efficiency, in this work, we investigate ZO optimization for continual learning (CL) as a novel approach to address the plasticity-stability-efficiency trilemma. Through theoretical analysis and empirical evidence, we show that ZO optimization naturally leads to flatter loss landscapes, which in turn reduce forgetting in CL. However, this stability comes at a cost of plasticity: due to its imprecise gradient estimates and slower convergence, ZO optimization tends to be less effective than FO in acquiring new task-specific knowledge, particularly under constrained training budgets. To better understand this trade-off, we conduct a holistic evaluation of ZO optimization applied to various existing CL methods. Our findings reveal that ZO optimization enhances stability but often undermines plasticity, particularly when used with learnable classifiers. Motivated by this insight, we propose ZO-FC, a simple but effective approach that applies ZO optimization to a single adapter-based PEFT module with FO optimized classifier. This design leverages the stability benefits of ZO while preserving the adaptability of FO updates with negligible memory overhead. Experiments demonstrate that ZO-FC achieves an effective balance between stability and plasticity, offering a practical and memory-efficient solution for on-device CL.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.