Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Signature Kernel Scoring Rule as Spatio-Temporal Diagnostic for Probabilistic Forecasting (2510.19110v1)

Published 21 Oct 2025 in stat.ML, cs.LG, and stat.AP

Abstract: Modern weather forecasting has increasingly transitioned from numerical weather prediction (NWP) to data-driven machine learning forecasting techniques. While these new models produce probabilistic forecasts to quantify uncertainty, their training and evaluation may remain hindered by conventional scoring rules, primarily MSE, which ignore the highly correlated data structures present in weather and atmospheric systems. This work introduces the signature kernel scoring rule, grounded in rough path theory, which reframes weather variables as continuous paths to encode temporal and spatial dependencies through iterated integrals. Validated as strictly proper through the use of path augmentations to guarantee uniqueness, the signature kernel provides a theoretically robust metric for forecast verification and model training. Empirical evaluations through weather scorecards on WeatherBench 2 models demonstrate the signature kernel scoring rule's high discriminative power and unique capacity to capture path-dependent interactions. Following previous demonstration of successful adversarial-free probabilistic training, we train sliding window generative neural networks using a predictive-sequential scoring rule on ERA5 reanalysis weather data. Using a lightweight model, we demonstrate that signature kernel based training outperforms climatology for forecast paths of up to fifteen timesteps.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper: