Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum Approximate Optimization Algorithm for MIMO with Quantized b-bit Beamforming (2510.15935v1)

Published 7 Oct 2025 in cs.ET, cs.IT, math.IT, and quant-ph

Abstract: Multiple-input multiple-output (MIMO) is critical for 6G communication, offering improved spectral efficiency and reliability. However, conventional fully digital designs face significant challenges due to high hardware complexity and power consumption. Low-bit MIMO architectures, such as those employing b-bit quantized phase shifters, provide a cost-effective alternative but introduce NP-hard combinatorial problems in the pre- and post-coding design. This paper explores the use of the Quantum Approximate Optimization Algorithm (QAOA) and alternating optimization to address the problem of b-bit quantized phase shifters both at the transmitter and the receiver. We demonstrate that the structure of this quantized beamforming problem aligns naturally with hybrid-classical methods like QAOA, as the phase shifts used in beamforming can be directly mapped to rotation gates in a quantum circuit. Notably, this paper is the first to show that theoretical connection. Then, the Hamiltonian derivation analysis for the b-bit case is presented, which could have applications in different fields, such as integrated sensing and communication, and emerging quantum algorithms such as quantum machine learning. In addition, a warm-start QAOA approach is studied which improves computational efficiency. Numerical results highlight the effectiveness of the proposed methods in achieving an improved quantized beamforming gain over their classical optimization benchmarks from the literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.