Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 53 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Bounds for Tyler's M-Estimator for Elliptical Distributions (2510.13751v1)

Published 15 Oct 2025 in math.ST, cs.LG, and stat.TH

Abstract: A fundamental problem in statistics is estimating the shape matrix of an Elliptical distribution. This generalizes the familiar problem of Gaussian covariance estimation, for which the sample covariance achieves optimal estimation error. For Elliptical distributions, Tyler proposed a natural M-estimator and showed strong statistical properties in the asymptotic regime, independent of the underlying distribution. Numerical experiments show that this estimator performs very well, and that Tyler's iterative procedure converges quickly to the estimator. Franks and Moitra recently provided the first distribution-free error bounds in the finite sample setting, as well as the first rigorous convergence analysis of Tyler's iterative procedure. However, their results exceed the sample complexity of the Gaussian setting by a $\log{2} d$ factor. We close this gap by proving optimal sample threshold and error bounds for Tyler's M-estimator for all Elliptical distributions, fully matching the Gaussian result. Moreover, we recover the algorithmic convergence even at this lower sample threshold. Our approach builds on the operator scaling connection of Franks and Moitra by introducing a novel pseudorandom condition, which we call $\infty$-expansion. We show that Elliptical distributions satisfy $\infty$-expansion at the optimal sample threshold, and then prove a novel scaling result for inputs satisfying this condition.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: