Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards Adversarial Robustness and Uncertainty Quantification in DINOv2-based Few-Shot Anomaly Detection (2510.13643v1)

Published 15 Oct 2025 in cs.CV

Abstract: Foundation models such as DINOv2 have shown strong performance in few-shot anomaly detection, yet two key questions remain unexamined: (i) how susceptible are these detectors to adversarial perturbations; and (ii) how well do their anomaly scores reflect calibrated uncertainty? Building on AnomalyDINO, a training-free deep nearest-neighbor detector over DINOv2 features, we present one of the first systematic studies of adversarial attacks and uncertainty estimation in this setting. To enable white-box gradient attacks while preserving test-time behavior, we attach a lightweight linear head to frozen DINOv2 features only for crafting perturbations. Using this heuristic, we evaluate the impact of FGSM across the MVTec-AD and VisA datasets and observe consistent drops in F1, AUROC, AP, and G-mean, indicating that imperceptible perturbations can flip nearest-neighbor relations in feature space to induce confident misclassification. Complementing robustness, we probe reliability and find that raw anomaly scores are poorly calibrated, revealing a gap between confidence and correctness that limits safety-critical use. As a simple, strong baseline toward trustworthiness, we apply post-hoc Platt scaling to the anomaly scores for uncertainty estimation. The resulting calibrated posteriors yield significantly higher predictive entropy on adversarially perturbed inputs than on clean ones, enabling a practical flagging mechanism for attack detection while reducing calibration error (ECE). Our findings surface concrete vulnerabilities in DINOv2-based few-shot anomaly detectors and establish an evaluation protocol and baseline for robust, uncertainty-aware anomaly detection. We argue that adversarial robustness and principled uncertainty quantification are not optional add-ons but essential capabilities if anomaly detection systems are to be trustworthy and ready for real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: