Papers
Topics
Authors
Recent
2000 character limit reached

Manifold Decoders: A Framework for Generative Modeling from Nonlinear Embeddings (2510.13622v1)

Published 15 Oct 2025 in cs.LG

Abstract: Classical nonlinear dimensionality reduction (NLDR) techniques like t-SNE, Isomap, and LLE excel at creating low-dimensional embeddings for data visualization but fundamentally lack the ability to map these embeddings back to the original high-dimensional space. This one-way transformation limits their use in generative applications. This paper addresses this critical gap by introducing a system- atic framework for constructing neural decoder architectures for prominent NLDR methods, enabling bidirectional mapping for the first time. We extend this framework by implementing a diffusion-based generative process that operates directly within these learned manifold spaces. Through experiments on the CelebA dataset, we evaluate the reconstruction and generative performance of our approach against autoencoder and standard diffusion model baselines. Our findings reveal a fundamental trade- off: while the decoders successfully reconstruct data, their quality is surpassed by end-to-end optimized autoencoders. Moreover, manifold-constrained diffusion yields poor-quality samples, suggesting that the discrete and sparse nature of classical NLDR embeddings is ill-suited for the continuous inter- polation required by generative models. This work highlights the inherent challenges in retrofitting generative capabilities onto NLDR methods designed primarily for visualization and analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.