On Thompson Sampling and Bilateral Uncertainty in Additive Bayesian Optimization (2510.11792v1)
Abstract: In Bayesian Optimization (BO), additive assumptions can mitigate the twin difficulties of modeling and searching a complex function in high dimension. However, common acquisition functions, like the Additive Lower Confidence Bound, ignore pairwise covariances between dimensions, which we'll call \textit{bilateral uncertainty} (BU), imposing a second layer of approximations. While theoretical results indicate that asymptotically not much is lost in doing so, little is known about the practical effects of this assumption in small budgets. In this article, we show that by exploiting conditional independence, Thompson Sampling respecting BU can be efficiently conducted. We use this fact to execute an empirical investigation into the loss incurred by ignoring BU, finding that the additive approximation to Thompson Sampling does indeed have, on balance, worse performance than the exact method, but that this difference is of little practical significance. This buttresses the theoretical understanding and suggests that the BU-ignoring approximation is sufficient for BO in practice, even in the non-asymptotic regime.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.