Papers
Topics
Authors
Recent
2000 character limit reached

On Thompson Sampling and Bilateral Uncertainty in Additive Bayesian Optimization (2510.11792v1)

Published 13 Oct 2025 in stat.ML and cs.LG

Abstract: In Bayesian Optimization (BO), additive assumptions can mitigate the twin difficulties of modeling and searching a complex function in high dimension. However, common acquisition functions, like the Additive Lower Confidence Bound, ignore pairwise covariances between dimensions, which we'll call \textit{bilateral uncertainty} (BU), imposing a second layer of approximations. While theoretical results indicate that asymptotically not much is lost in doing so, little is known about the practical effects of this assumption in small budgets. In this article, we show that by exploiting conditional independence, Thompson Sampling respecting BU can be efficiently conducted. We use this fact to execute an empirical investigation into the loss incurred by ignoring BU, finding that the additive approximation to Thompson Sampling does indeed have, on balance, worse performance than the exact method, but that this difference is of little practical significance. This buttresses the theoretical understanding and suggests that the BU-ignoring approximation is sufficient for BO in practice, even in the non-asymptotic regime.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 19 likes about this paper.