Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MeTA-LoRA: Data-Efficient Multi-Task Fine-Tuning for Large Language Models (2510.11598v1)

Published 13 Oct 2025 in cs.CL

Abstract: Low-Rank Adaptation (LoRA) has emerged as one of the most widely used parameter-efficient fine-tuning (PEFT) methods for adapting LLMs to downstream tasks. While highly effective in single-task settings, it struggles to efficiently leverage inter-task knowledge in complex multi-task learning scenarios, often requiring substantial task-specific data to achieve optimal performance. To address this limitation, we introduce MeTA-LoRA, a two-stage optimization framework that significantly improves data efficiency in multi-task adaptation. In the first stage, task-specific LoRA adapters are learned using only a few samples from each involved dataset, enabling rapid adaptation without large-scale supervision. In the second stage, the shared LoRA adapter is updated by aggregating gradients from multiple tasks to promote knowledge transfer across tasks, further reducing data usage by leveraging common patterns. In both multi-task learning and multilingual learning scenarios, our method matches or surpasses the performance of traditional full-data LoRA fine-tuning approaches, while using significantly less task-specific data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.