Automated Refinement of Essay Scoring Rubrics for Language Models via Reflect-and-Revise (2510.09030v1)
Abstract: The performance of LLMs is highly sensitive to the prompts they are given. Drawing inspiration from the field of prompt optimization, this study investigates the potential for enhancing Automated Essay Scoring (AES) by refining the scoring rubrics used by LLMs. Specifically, our approach prompts models to iteratively refine rubrics by reflecting on models' own scoring rationales and observed discrepancies with human scores on sample essays. Experiments on the TOEFL11 and ASAP datasets using GPT-4.1, Gemini-2.5-Pro, and Qwen-3-Next-80B-A3B-Instruct show Quadratic Weighted Kappa (QWK) improvements of up to 0.19 and 0.47, respectively. Notably, even with a simple initial rubric, our approach achieves comparable or better QWK than using detailed human-authored rubrics. Our findings highlight the importance of iterative rubric refinement in LLM-based AES to enhance alignment with human evaluations.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.