Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Machine Learning enhanced parametric Reynolds-averaged Navier-Stokes equations at the full and reduced order levels (2510.06992v1)

Published 8 Oct 2025 in physics.flu-dyn, cs.NA, and math.NA

Abstract: In this contribution, we focus on the Reynolds-Averaged Navier-Stokes (RANS) models and their exploitation to build reliable reduced order models to further accelerate predictions for real-time applications and many-query scenarios. Specifically, we investigate how machine learning can be employed to enhance the predictive capabilities of the model, both at the Full Order Model (FOM) and Reduced Order Model (ROM) levels. We explore a novel integration of these two areas. We generate the FOM snapshots, essential for ROM construction, using a data-driven RANS model: the $\nu_t$-Vector Basis Neural Network. This is the first time that these machine learning procedure generalizes a large parametric variation, and we propose tailored training strategies to increase the accuracy of the FOM model. At the ROM level, we compare the results obtained by standard Proper Orthogonal Decomposition in an intrusive Galerkin setting (PODG) and POD Neural Network approach (PODNN). The numerical validation is based on a classic turbulent flow benchmark: the flow in a square duct. Our investigation reveals that the PODG method, proves unstable and inaccurate for turbulent flow prediction, while PODNN demonstrates superior performance in terms of accuracy and computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.