Control-Augmented Autoregressive Diffusion for Data Assimilation (2510.06637v1)
Abstract: Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments pretrained ARDMs with a lightweight controller network, trained offline by previewing future ARDM rollouts and learning stepwise controls that anticipate upcoming observations under a terminal cost objective. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), a setting where existing methods are often computationally prohibitive and prone to forecast drift under sparse observations. Our approach reduces DA inference to a single forward rollout with on-the-fly corrections, avoiding expensive adjoint computations and/or optimizations during inference. We demonstrate that our method consistently outperforms four state-of-the-art baselines in stability, accuracy, and physical fidelity across two canonical PDEs and six observation regimes. We will release code and checkpoints publicly.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.