TokenChain: A Discrete Speech Chain via Semantic Token Modeling (2510.06201v1)
Abstract: Machine Speech Chain, simulating the human perception-production loop, proves effective in jointly improving ASR and TTS. We propose TokenChain, a fully discrete speech chain coupling semantic-token ASR with a two-stage TTS: an autoregressive text-to-semantic model co-trained with ASR and a masked-generative semantic-to-acoustic model for synthesis only. End-to-end feedback across the text interface is enabled with straight-through argmax/Gumbel-Softmax and balanced with supervised ASR via dynamic weight averaging. Ablations examine optimal temperature schedules for in- and cross-domain transfer. Evaluation reveals TokenChain surpasses baseline accuracy 2-6 epochs earlier and yields 5-13% lower equal-epoch error with stable T2S on LibriSpeech, and reduces relative ASR WER by 56% and T2S WER by 31% on TED-LIUM with minimal forgetting, showing that chain learning remains effective with token interfaces and models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.