Gini-based Model Monitoring: A General Framework with an Application to Non-life Insurance Pricing (2510.04556v1)
Abstract: In a dynamic landscape where portfolios and environments evolve, maintaining the accuracy of pricing models is critical. To the best of our knowledge, this is the first study to systematically examine concept drift in non-life insurance pricing. We (i) provide an overview of the relevant literature and commonly used methodologies, clarify the distinction between virtual drift and concept drift, and explain their implications for long-run model performance; (ii) review and formalize common performance measures, including the Gini index and deviance loss, and articulate their interpretation; (iii) derive the asymptotic distribution of the Gini index, enabling valid inference and hypothesis testing; and (iv) present a standardized monitoring procedure that indicates when refitting is warranted. We illustrate the framework using a modified real-world portfolio with induced concept drift and discuss practical considerations and pitfalls.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.