Papers
Topics
Authors
Recent
2000 character limit reached

On Continuous Optimization for Constraint Satisfaction Problems (2510.04480v1)

Published 6 Oct 2025 in cs.AI

Abstract: Constraint satisfaction problems (CSPs) are fundamental in mathematics, physics, and theoretical computer science. While conflict-driven clause learning Boolean Satisfiability (SAT) solvers have achieved remarkable success and become the mainstream approach for Boolean satisfiability, recent advances show that modern continuous local search (CLS) solvers can achieve highly competitive results on certain classes of SAT problems. Motivated by these advances, we extend the CLS framework from Boolean SAT to general CSP with finite-domain variables and expressive constraints. We present FourierCSP, a continuous optimization framework that generalizes the Walsh-Fourier transform to CSP, allowing for transforming versatile constraints to compact multilinear polynomials, thereby avoiding the need for auxiliary variables and memory-intensive encodings. Our approach leverages efficient evaluation and differentiation of the objective via circuit-output probability and employs a projected gradient optimization method with theoretical guarantees. Empirical results on benchmark suites demonstrate that FourierCSP is scalable and competitive, significantly broadening the class of problems that can be efficiently solved by CLS techniques.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.