Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Zeroth-Order Methods for Stochastic Nonconvex Nonsmooth Composite Optimization (2510.04446v1)

Published 6 Oct 2025 in math.OC and cs.LG

Abstract: This work aims to solve a stochastic nonconvex nonsmooth composite optimization problem. Previous works on composite optimization problem requires the major part to satisfy Lipschitz smoothness or some relaxed smoothness conditions, which excludes some machine learning examples such as regularized ReLU network and sparse support matrix machine. In this work, we focus on stochastic nonconvex composite optimization problem without any smoothness assumptions. In particular, we propose two new notions of approximate stationary points for such optimization problem and obtain finite-time convergence results of two zeroth-order algorithms to these two approximate stationary points respectively. Finally, we demonstrate that these algorithms are effective using numerical experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.