Papers
Topics
Authors
Recent
Search
2000 character limit reached

Domain Generalization: A Tale of Two ERMs

Published 6 Oct 2025 in cs.LG and stat.ML | (2510.04441v1)

Abstract: Domain generalization (DG) is the problem of generalizing from several distributions (or domains), for which labeled training data are available, to a new test domain for which no labeled data is available. A common finding in the DG literature is that it is difficult to outperform empirical risk minimization (ERM) on the pooled training data. In this work, we argue that this finding has primarily been reported for datasets satisfying a \emph{covariate shift} assumption. When the dataset satisfies a \emph{posterior drift} assumption instead, we show that ``domain-informed ERM,'' wherein feature vectors are augmented with domain-specific information, outperforms pooling ERM. These claims are supported by a theoretical framework and experiments on language and vision tasks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.