Papers
Topics
Authors
Recent
2000 character limit reached

Lightweight Prompt Engineering for Cognitive Alignment in Educational AI: A OneClickQuiz Case Study (2510.03374v1)

Published 3 Oct 2025 in cs.CY, cs.AI, and cs.CL

Abstract: The rapid integration of AI into educational technology promises to revolutionize content creation and assessment. However, the quality and pedagogical alignment of AI-generated content remain critical challenges. This paper investigates the impact of lightweight prompt engineering strategies on the cognitive alignment of AI-generated questions within OneClickQuiz, a Moodle plugin leveraging generative AI. We evaluate three prompt variants-a detailed baseline, a simpler version, and a persona-based approach-across Knowledge, Application, and Analysis levels of Bloom's Taxonomy. Utilizing an automated classification model (from prior work) and human review, our findings demonstrate that explicit, detailed prompts are crucial for precise cognitive alignment. While simpler and persona-based prompts yield clear and relevant questions, they frequently misalign with intended Bloom's levels, generating outputs that are either too complex or deviate from the desired cognitive objective. This study underscores the importance of strategic prompt engineering in fostering pedagogically sound AI-driven educational solutions and advises on optimizing AI for quality content generation in learning analytics and smart learning environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.