Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Deception Framework with Behavioral Analysis for Enhanced Cybersecurity Defense

Published 2 Oct 2025 in cs.CR and cs.LG | (2510.02424v1)

Abstract: This paper presents CADL (Cognitive-Adaptive Deception Layer), an adaptive deception framework achieving 99.88% detection rate with 0.13% false positive rate on the CICIDS2017 dataset. The framework employs ensemble machine learning (Random Forest, XGBoost, Neural Networks) combined with behavioral profiling to identify and adapt responses to network intrusions. Through a coordinated signal bus architecture, security components share real-time intelligence, enabling collective decision-making. The system profiles attackers based on temporal patterns and deploys customized deception strategies across five escalation levels. Evaluation on 50,000 CICIDS2017 test samples demonstrates that CADL significantly outperforms traditional intrusion detection systems (Snort: 71.2%, Suricata: 68.5%) while maintaining production-ready false positive rates. The framework's behavioral analysis achieves 89% accuracy in classifying attacker profiles. We provide open-source implementation and transparent performance metrics, offering an accessible alternative to commercial deception platforms costing $150-400 per host annually.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.