Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

G-reasoner: Foundation Models for Unified Reasoning over Graph-structured Knowledge (2509.24276v1)

Published 29 Sep 2025 in cs.AI

Abstract: LLMs excel at complex reasoning but remain limited by static and incomplete parametric knowledge. Retrieval-augmented generation (RAG) mitigates this by incorporating external knowledge, yet existing RAGs struggle with knowledge-intensive tasks due to fragmented information and weak modeling of knowledge structure. Graphs offer a natural way to model relationships within knowledge, but LLMs are inherently unstructured and cannot effectively reason over graph-structured data. Recent graph-enhanced RAG (GraphRAG) attempts to bridge this gap by constructing tailored graphs and enabling LLMs to reason on them. However, these methods often depend on ad-hoc graph designs, heuristic search, or costly agent pipelines, which hinder scalability and generalization. To address these challenges, we present G-reasoner, a unified framework that integrates graph and language foundation models for reasoning over diverse graph-structured knowledge. Central to our approach is QuadGraph, a standardized four-layer abstraction that unifies heterogeneous knowledge sources into a common graph representation. Building on this, we introduce a 34M-parameter graph foundation model (GFM) that jointly captures graph topology and textual semantics, and is integrated with LLMs to enhance reasoning in downstream applications. To ensure scalability and efficiency, mixed-precision training and distributed message-passing are implemented to scale GFM with more GPUs. Extensive experiments on six benchmarks show that G-reasoner consistently outperforms state-of-the-art baselines, significantly enhances LLM reasoning, and achieves strong efficiency and cross-graph generalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.