Papers
Topics
Authors
Recent
2000 character limit reached

Patient-specific Biomolecular Instruction Tuning (2509.22853v1)

Published 26 Sep 2025 in q-bio.QM, cs.AI, cs.CL, and cs.LG

Abstract: Proteomics data is essential to pathogenic understanding of a disease phenotype. In cancer, analysis of molecular signatures enables precision medicine through the identification of biological processes that drive individualized tumor progression, therapeutic resistance, and clinical heterogeneity. Recent advances in multimodal LLMs have shown remarkable capacity to integrate and reason across heterogeneous data modalities. However, performing multi-modal language modeling for molecular understanding of patient-specific proteomics remains a significant challenge due to two barriers: (1) the lack of instruction-tuning datasets that enable clinical interpretation from proteomics data, and (2) the absence of language modeling architectures designed to capture the rich heterogeneity of molecular data. In this work, we introduce CPTAC-PROTSTRUCT, the first instruction tuning dataset for molecular understanding of oncology, comprising over 400k open-ended examples derived from individualized proteomic profiles curated from the largest national proteomics cancer study (CPTAC). Additionally, we propose KRONOS (Knowledge Representation of patient Omics Networks in Oncology via Structured tuning), a novel graph-LLM framework that leverages molecular interaction topology with proteomics to learn patient-specific graph representations for enhanced clinical reasoning. We show that KRONOS achieves competitive performance across benchmark clinical tasks, including molecular classification, temporal trajectory modeling, and tumor stage prediction from proteomics data. Ultimately, this approach empowers LLMs to understand patient-level pathogenesis, advancing precision medicine through more accurate diagnosis, prognosis, and treatment stratification.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.