No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping (2509.21880v1)
Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of LLMs. However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward - so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce RL with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.
 
          