Differentially-Private Decentralized Learning in Heterogeneous Multicast Networks (2509.21688v1)
Abstract: We propose a power-controlled differentially private decentralized learning algorithm designed for a set of clients aiming to collaboratively train a common learning model. The network is characterized by a row-stochastic adjacency matrix, which reflects different channel gains between the clients. In our privacy-preserving approach, both the transmit power for model updates and the level of injected Gaussian noise are jointly controlled to satisfy a given privacy and energy budget. We show that our proposed algorithm achieves a convergence rate of O(log T), where T is the horizon bound in the regret function. Furthermore, our numerical results confirm that our proposed algorithm outperforms existing works.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.