Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Breaking the curse of dimensionality for linear rules: optimal predictors over the ellipsoid (2509.21174v1)

Published 25 Sep 2025 in stat.ML and cs.LG

Abstract: In this work, we address the following question: What minimal structural assumptions are needed to prevent the degradation of statistical learning bounds with increasing dimensionality? We investigate this question in the classical statistical setting of signal estimation from $n$ independent linear observations $Y_i = X_i{\top}\theta + \epsilon_i$. Our focus is on the generalization properties of a broad family of predictors that can be expressed as linear combinations of the training labels, $f(X) = \sum_{i=1}{n} l_{i}(X) Y_i$. This class -- commonly referred to as linear prediction rules -- encompasses a wide range of popular parametric and non-parametric estimators, including ridge regression, gradient descent, and kernel methods. Our contributions are twofold. First, we derive non-asymptotic upper and lower bounds on the generalization error for this class under the assumption that the Bayes predictor $\theta$ lies in an ellipsoid. Second, we establish a lower bound for the subclass of rotationally invariant linear prediction rules when the Bayes predictor is fixed. Our analysis highlights two fundamental contributions to the risk: (a) a variance-like term that captures the intrinsic dimensionality of the data; (b) the noiseless error, a term that arises specifically in the high-dimensional regime. These findings shed light on the role of structural assumptions in mitigating the curse of dimensionality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 5 likes.