Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators (1503.03188v2)

Published 11 Mar 2015 in math.ST, stat.ML, and stat.TH

Abstract: For the problem of high-dimensional sparse linear regression, it is known that an $\ell_0$-based estimator can achieve a $1/n$ "fast" rate on the prediction error without any conditions on the design matrix, whereas in absence of restrictive conditions on the design matrix, popular polynomial-time methods only guarantee the $1/\sqrt{n}$ "slow" rate. In this paper, we show that the slow rate is intrinsic to a broad class of M-estimators. In particular, for estimators based on minimizing a least-squares cost function together with a (possibly non-convex) coordinate-wise separable regularizer, there is always a "bad" local optimum such that the associated prediction error is lower bounded by a constant multiple of $1/\sqrt{n}$. For convex regularizers, this lower bound applies to all global optima. The theory is applicable to many popular estimators, including convex $\ell_1$-based methods as well as M-estimators based on nonconvex regularizers, including the SCAD penalty or the MCP regularizer. In addition, for a broad class of nonconvex regularizers, we show that the bad local optima are very common, in that a broad class of local minimization algorithms with random initialization will typically converge to a bad solution.

Citations (42)

Summary

We haven't generated a summary for this paper yet.