Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Composition Direction of Seymour's Theorem for Regular Matroids -- Formally Verified (2509.20539v1)

Published 24 Sep 2025 in math.CO and cs.LO

Abstract: Seymour's decomposition theorem is a haLLMark result in matroid theory presenting a structural characterization of the class of regular matroids. Formalization of matroid theory faces many challenges, most importantly that only a limited number of notions and results have been implemented so far. In this work, we formalize the proof of the forward (composition) direction of Seymour's theorem for regular matroids. To this end, we develop a library in Lean 4 that implements definitions and results about totally unimodular matrices, vector matroids, their standard representations, regular matroids, and 1-, 2-, and 3-sums of matrices and binary matroids given by their standard representations. Using this framework, we formally state Seymour's decomposition theorem and implement a formally verified proof of the composition direction in the setting where the matroids have finite rank and may have infinite ground sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 6 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube