Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Learning from Observation: A Survey of Recent Advances (2509.19379v1)

Published 20 Sep 2025 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Imitation Learning (IL) algorithms offer an efficient way to train an agent by mimicking an expert's behavior without requiring a reward function. IL algorithms often necessitate access to state and action information from expert demonstrations. Although expert actions can provide detailed guidance, requiring such action information may prove impractical for real-world applications where expert actions are difficult to obtain. To address this limitation, the concept of learning from observation (LfO) or state-only imitation learning (SOIL) has recently gained attention, wherein the imitator only has access to expert state visitation information. In this paper, we present a framework for LfO and use it to survey and classify existing LfO methods in terms of their trajectory construction, assumptions and algorithm's design choices. This survey also draws connections between several related fields like offline RL, model-based RL and hierarchical RL. Finally, we use our framework to identify open problems and suggest future research directions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 5 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube