Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 37 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TinyBEV: Cross Modal Knowledge Distillation for Efficient Multi Task Bird's Eye View Perception and Planning (2509.18372v1)

Published 22 Sep 2025 in cs.CV

Abstract: We present TinyBEV, a unified, camera only Bird's Eye View (BEV) framework that distills the full-stack capabilities of a large planning-oriented teacher (UniAD [19]) into a compact, real-time student model. Unlike prior efficient camera only baselines such as VAD[23] and VADv2[7], TinyBEV supports the complete autonomy stack 3D detection, HD-map segmentation, motion forecasting, occupancy prediction, and goal-directed planning within a streamlined 28M-parameter backbone, achieving a 78% reduction in parameters over UniAD [19]. Our model-agnostic, multi-stage distillation strategy combines feature-level, output-level, and adaptive region-aware supervision to effectively transfer high-capacity multi-modal knowledge to a lightweight BEV representation. On nuScenes[4], Tiny-BEV achieves 39.0 mAP for detection, 1.08 minADE for motion forecasting, and a 0.32 collision rate, while running 5x faster (11 FPS) and requiring only camera input. These results demonstrate that full-stack driving intelligence can be retained in resource-constrained settings, bridging the gap between large-scale, multi-modal perception-planning models and deployment-ready real-time autonomy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.