Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Optimizing Split Federated Learning with Unstable Client Participation (2509.17398v1)

Published 22 Sep 2025 in cs.NI

Abstract: To enable training of large AI models at the network edge, split federated learning (SFL) has emerged as a promising approach by distributing computation between edge devices and a server. However, while unstable network environments pose significant challenges to SFL, prior schemes often overlook such an effect by assuming perfect client participation, rendering them impractical for real-world scenarios. In this work, we develop an optimization framework for SFL with unstable client participation. We theoretically derive the first convergence upper bound for SFL with unstable client participation by considering activation uploading failures, gradient downloading failures, and model aggregation failures. Based on the theoretical results, we formulate a joint optimization problem for client sampling and model splitting to minimize the upper bound. We then develop an efficient solution approach to solve the problem optimally. Extensive simulations on EMNIST and CIFAR-10 demonstrate the superiority of our proposed framework compared to existing benchmarks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube