AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks (2403.13101v3)
Abstract: The increasing complexity of deep neural networks poses significant barriers to democratizing them to resource-limited edge devices. To address this challenge, split federated learning (SFL) has emerged as a promising solution by of floading the primary training workload to a server via model partitioning while enabling parallel training among edge devices. However, although system optimization substantially influences the performance of SFL under resource-constrained systems, the problem remains largely uncharted. In this paper, we provide a convergence analysis of SFL which quantifies the impact of model splitting (MS) and client-side model aggregation (MA) on the learning performance, serving as a theoretical foundation. Then, we propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems. Specifically, AdaptSFL adaptively controls client-side MA and MS to balance communication-computing latency and training convergence. Extensive simulations across various datasets validate that our proposed AdaptSFL framework takes considerably less time to achieve a target accuracy than benchmarks, demonstrating the effectiveness of the proposed strategies.
- K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.
- J. Huang, H. Zhang, C. Huang, L. Yang, and W. Zhang, “Noncoherent Massive Random Access for Inhomogeneous Networks: From Message Passing to Deep Learning,” IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1457–1472, May 2022.
- S. Hu, Z. Fang, H. An, G. Xu, Y. Zhou, X. Chen, and Y. Fang, “Adaptive Communications in Collaborative Perception with Domain Alignment for Autonomous Driving,” arXiv preprint arXiv:2310.00013, Sep. 2023.
- Q. Chen, W. Meng, T. Q. Quek, and S. Chen, “Multi-tier Hybrid Offloading for Computation-aware IoT Applications in Civil Aircraft-augmented SAGIN,” IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 399–417, Dec. 2022.
- “How You Contribute to Today’s Growing DataSphere and Its Enterprise Impact.”. IDC. Nov. 2019. [Online]. Available: https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-datasphere-and-its-enterprise-impact/
- G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an Intelligent Edge: Wireless Communication Meets Machine Learning,” IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.
- Z. Lin, L. Wang, J. Ding, B. Tan, and S. Jin, “Channel Power Gain Estimation for Terahertz Vehicle-to-infrastructure Networks,” IEEE Commun. Lett., vol. 27, no. 1, pp. 155–159, Jan. 2023.
- J. Huang, K. Yuan, C. Huang, and K. Huang, “D22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT-JSCC: Digital Deep Joint Source-channel Coding for Semantic Communications,” arXiv preprint arXiv:2403.07338, Mar. 2024.
- S. Hu, Z. Fang, Y. Deng, X. Chen, and Y. Fang, “Collaborative Perception for Connected and Autonomous Driving: Challenges, Possible Solutions and Opportunities,” arXiv preprint arXiv:2401.01544, Jan. 2024.
- X. Chen, G. Zhu, H. Ding, L. Zhang, H. Zhang, and Y. Fang, “End-to-End Service Auction: A General Double Auction Mechanism for Edge Computing Services,” IEEE/ACM Trans. Networking, vol. 30, no. 6, pp. 2616–2629, Jun. 2022.
- X. Liu, Z. Yan, Y. Zhou, D. Wu, X. Chen, and J. H. Wang, “Optimizing Parameter Mixing Under Constrained Communications in Parallel Federated Learning,” IEEE/ACM Trans. Networking, vol. 31, no. 6, pp. 2640–2652, Dec. 2023.
- Y. Deng, X. Chen, G. Zhu, Y. Fang, Z. Chen, and X. Deng, “Actions at the Edge: Jointly Optimizing the Resources in Multi-access Edge Computing,” IEEE Wireless Commun., vol. 29, no. 2, pp. 192–198, Apr. 2022.
- H. Yuan, Z. Chen, Z. Lin, J. Peng, Z. Fang, Y. Zhong, Z. Song, X. Wang, and Y. Gao, “Graph Learning for Multi-Satellite Based Spectrum Sensing,” in Proc. ICCT, Oct. 2023.
- Q. Chen, W. Meng, S. Han, C. Li, and H.-H. Chen, “Robust Task Scheduling for Delay-aware IoT Applications in Civil Aircraft-Augmented SAGIN,” IEEE Trans. Commun., vol. 70, no. 8, pp. 5368–5385, Jun. 2022.
- X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated Learning over Multihop Wireless Networks with In-network Aggregation,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4622–4634, Apr. 2022.
- B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient Learning of Deep Networks From Decentralized Data,” in Proc. AISTATS, Apr. 2017.
- J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated Learning: Strategies for Improving Communication Efficiency,” arXiv preprint arXiv:1610.05492, Oct. 2016.
- Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing Large Language Models to the 6G Edge: Vision, Challenges, and Opportunities,” arXiv preprint arXiv:2309.16739, Sep. 2023.
- P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split Learning for Health: Distributed Deep Learning without Sharing Raw Patient Data,” arXiv preprint arXiv:1812.00564, Dec. 2018.
- Z. Lin, G. Qu, X. Chen, and K. Huang, “Split Learning in 6G Edge Networks,” IEEE Wireless Commun., 2024.
- S. Lyu, Z. Lin, G. Qu, X. Chen, X. Huang, and P. Li, “Optimal Resource Allocation for U-shaped Parallel Split Learning,” arXiv preprint arXiv:2308.08896, Oct. 2023.
- C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When Federated Learning Meets Split Learning,” in Proc. AAAI, Feb. 2022.
- S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive Federated Learning in Resource Constrained Edge Computing Systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–1221, Mar. 2019.
- X. Wu, F. Huang, Z. Hu, and H. Huang, “Faster Adaptive Federated Learning,” in Proc. AAAI, Jun. 2023.
- S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t Decay the Learning Rate, Increase the Batch Size,” in Proc. ICLR, Feb. 2018.
- H. Yu and R. Jin, “On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-convex Optimization,” in Proc. ICML, Jun. 2019.
- T. Xiang, Y. Bi, X. Chen, Y. Liu, B. Wang, X. Shen, and X. Wang, “Federated Learning with Dynamic Epoch Adjustment and Collaborative Training in Mobile Edge Computing,” IEEE Trans. Mobile Comput., Jun. 2023.
- W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi, “Split learning over Wireless Networks: Parallel Design and Resource Management,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 1051–1066, Feb. 2023.
- S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, “HiveMind: Towards Cellular Native Machine Learning Model Splitting,” IEEE J. Sel. Areas Commun., vol. 40, no. 2, pp. 626–640, Oct. 2021.
- Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang, “Efficient Parallel Split Learning over Resource-constrained Wireless Edge Networks,” IEEE Trans. Mobile Comput., 2024.
- D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the Tiger: Inference Attacks on Split Learning,” in Proc. CCS, Nov. 2021.
- Karimireddy, Sai Praneeth and Kale, Satyen and Mohri, Mehryar and Reddi, Sashank and Stich, Sebastian and Suresh, Ananda Theertha, “On the Convergence Properties of A K-step Averaging Stochastic Gradient Descent Algorithm for Nonconvex Optimization,” in Proc. IJCAI, Jul. 2018.
- H. Yu, R. Jin, and S. Yang, “On the Linear Speedup Analysis of Communication Efficient Momentum SGD For Distributed Non-convex Optimization,” in Proc. ICML, Jun. 2019, pp. 7184–7193.
- S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold: Stochastic Controlled Averaging for Federated Learning,” in Proc. ICLR, Apr. 2020.
- Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-efficient Algorithms for Statistical Optimization,” in Proc. NIPS, Jun. 2012.
- X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent,” in Proc. NIPS, Jun. 2017.
- H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan, “Perturbed Iterate Analysis for Asynchronous Stochastic Optimization,” SIAM J. Optim., vol. 27, no. 4, pp. 2202–2229, Jan. 2017.
- T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t Use Large Mini-batches, Use Local SGD,” in Proc. ICLR, Dec. 2019.
- W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint Device Scheduling and Resource Allocation for Latency Constrained Wireless Federated Learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 453–467, Sep. 2020.
- W. Xia, W. Wen, K.-K. Wong, T. Q. Quek, J. Zhang, and H. Zhu, “Federated-learning-based Client Scheduling for Low-latency Wireless Communications,” IEEE Wireless Commun., vol. 28, no. 2, pp. 32–38, Apr. 2021.
- W. Dinkelbach, “On Nonlinear Fractional Programming,” Manage. Sci., vol. 13, no. 7, pp. 492–498, Mar. 1967.
- D. Yue and F. You, “A Reformulation-linearization Method for the Global Optimization of Large-scale Mixed-Integer Linear Fractional Programming Problems and Cyclic Scheduling aApplication,” in Proc. ACC, Jun. 2013.
- R. G. Ródenas, M. L. López, and D. Verastegui, “Extensions of Dinkelbach’s Algorithm for Solving Non-linear Fractional Programming Problems,” Top, vol. 7, pp. 33–70, Jun. 1999.
- P. Tseng, “Convergence of A Block Coordinate Descent Method for Nondifferentiable Minimization,” J Optim Theory Appl, vol. 109, pp. 475–494, Jun. 2001.
- A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of Features From Tiny Images,” Tech. Rep., Apr. 2009.
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to Document Recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.
- G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 491–506, Oct. 2019.
- Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy Efficient Federated Learning over Wireless Communication Networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Nov. 2020.
- Z. Lin, Z. Chen, Z. Fang, X. Chen, X. Wang, and Y. Gao, “FedSN: A General Federated Learning Framework over LEO Satellite Networks,” arXiv preprint arXiv:2311.01483, Nov. 2023.
- K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-scale Image Recognition,” in Proc. ICLR, 2015.
- Zheng Lin (104 papers)
- Guanqiao Qu (9 papers)
- Wei Wei (424 papers)
- Xianhao Chen (50 papers)
- Kin K. Leung (65 papers)