Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks (2403.13101v3)

Published 19 Mar 2024 in cs.LG, cs.AI, and cs.DC

Abstract: The increasing complexity of deep neural networks poses significant barriers to democratizing them to resource-limited edge devices. To address this challenge, split federated learning (SFL) has emerged as a promising solution by of floading the primary training workload to a server via model partitioning while enabling parallel training among edge devices. However, although system optimization substantially influences the performance of SFL under resource-constrained systems, the problem remains largely uncharted. In this paper, we provide a convergence analysis of SFL which quantifies the impact of model splitting (MS) and client-side model aggregation (MA) on the learning performance, serving as a theoretical foundation. Then, we propose AdaptSFL, a novel resource-adaptive SFL framework, to expedite SFL under resource-constrained edge computing systems. Specifically, AdaptSFL adaptively controls client-side MA and MS to balance communication-computing latency and training convergence. Extensive simulations across various datasets validate that our proposed AdaptSFL framework takes considerably less time to achieve a target accuracy than benchmarks, demonstrating the effectiveness of the proposed strategies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.
  2. J. Huang, H. Zhang, C. Huang, L. Yang, and W. Zhang, “Noncoherent Massive Random Access for Inhomogeneous Networks: From Message Passing to Deep Learning,” IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1457–1472, May 2022.
  3. S. Hu, Z. Fang, H. An, G. Xu, Y. Zhou, X. Chen, and Y. Fang, “Adaptive Communications in Collaborative Perception with Domain Alignment for Autonomous Driving,” arXiv preprint arXiv:2310.00013, Sep. 2023.
  4. Q. Chen, W. Meng, T. Q. Quek, and S. Chen, “Multi-tier Hybrid Offloading for Computation-aware IoT Applications in Civil Aircraft-augmented SAGIN,” IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 399–417, Dec. 2022.
  5. “How You Contribute to Today’s Growing DataSphere and Its Enterprise Impact.”. IDC. Nov. 2019. [Online]. Available: https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-datasphere-and-its-enterprise-impact/
  6. G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an Intelligent Edge: Wireless Communication Meets Machine Learning,” IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, Jan. 2020.
  7. Z. Lin, L. Wang, J. Ding, B. Tan, and S. Jin, “Channel Power Gain Estimation for Terahertz Vehicle-to-infrastructure Networks,” IEEE Commun. Lett., vol. 27, no. 1, pp. 155–159, Jan. 2023.
  8. J. Huang, K. Yuan, C. Huang, and K. Huang, “D22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT-JSCC: Digital Deep Joint Source-channel Coding for Semantic Communications,” arXiv preprint arXiv:2403.07338, Mar. 2024.
  9. S. Hu, Z. Fang, Y. Deng, X. Chen, and Y. Fang, “Collaborative Perception for Connected and Autonomous Driving: Challenges, Possible Solutions and Opportunities,” arXiv preprint arXiv:2401.01544, Jan. 2024.
  10. X. Chen, G. Zhu, H. Ding, L. Zhang, H. Zhang, and Y. Fang, “End-to-End Service Auction: A General Double Auction Mechanism for Edge Computing Services,” IEEE/ACM Trans. Networking, vol. 30, no. 6, pp. 2616–2629, Jun. 2022.
  11. X. Liu, Z. Yan, Y. Zhou, D. Wu, X. Chen, and J. H. Wang, “Optimizing Parameter Mixing Under Constrained Communications in Parallel Federated Learning,” IEEE/ACM Trans. Networking, vol. 31, no. 6, pp. 2640–2652, Dec. 2023.
  12. Y. Deng, X. Chen, G. Zhu, Y. Fang, Z. Chen, and X. Deng, “Actions at the Edge: Jointly Optimizing the Resources in Multi-access Edge Computing,” IEEE Wireless Commun., vol. 29, no. 2, pp. 192–198, Apr. 2022.
  13. H. Yuan, Z. Chen, Z. Lin, J. Peng, Z. Fang, Y. Zhong, Z. Song, X. Wang, and Y. Gao, “Graph Learning for Multi-Satellite Based Spectrum Sensing,” in Proc. ICCT, Oct. 2023.
  14. Q. Chen, W. Meng, S. Han, C. Li, and H.-H. Chen, “Robust Task Scheduling for Delay-aware IoT Applications in Civil Aircraft-Augmented SAGIN,” IEEE Trans. Commun., vol. 70, no. 8, pp. 5368–5385, Jun. 2022.
  15. X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated Learning over Multihop Wireless Networks with In-network Aggregation,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4622–4634, Apr. 2022.
  16. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient Learning of Deep Networks From Decentralized Data,” in Proc. AISTATS, Apr. 2017.
  17. J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated Learning: Strategies for Improving Communication Efficiency,” arXiv preprint arXiv:1610.05492, Oct. 2016.
  18. Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing Large Language Models to the 6G Edge: Vision, Challenges, and Opportunities,” arXiv preprint arXiv:2309.16739, Sep. 2023.
  19. P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split Learning for Health: Distributed Deep Learning without Sharing Raw Patient Data,” arXiv preprint arXiv:1812.00564, Dec. 2018.
  20. Z. Lin, G. Qu, X. Chen, and K. Huang, “Split Learning in 6G Edge Networks,” IEEE Wireless Commun., 2024.
  21. S. Lyu, Z. Lin, G. Qu, X. Chen, X. Huang, and P. Li, “Optimal Resource Allocation for U-shaped Parallel Split Learning,” arXiv preprint arXiv:2308.08896, Oct. 2023.
  22. C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When Federated Learning Meets Split Learning,” in Proc. AAAI, Feb. 2022.
  23. S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive Federated Learning in Resource Constrained Edge Computing Systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1205–1221, Mar. 2019.
  24. X. Wu, F. Huang, Z. Hu, and H. Huang, “Faster Adaptive Federated Learning,” in Proc. AAAI, Jun. 2023.
  25. S. L. Smith, P.-J. Kindermans, and Q. V. Le, “Don’t Decay the Learning Rate, Increase the Batch Size,” in Proc. ICLR, Feb. 2018.
  26. H. Yu and R. Jin, “On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-convex Optimization,” in Proc. ICML, Jun. 2019.
  27. T. Xiang, Y. Bi, X. Chen, Y. Liu, B. Wang, X. Shen, and X. Wang, “Federated Learning with Dynamic Epoch Adjustment and Collaborative Training in Mobile Edge Computing,” IEEE Trans. Mobile Comput., Jun. 2023.
  28. W. Wu, M. Li, K. Qu, C. Zhou, X. Shen, W. Zhuang, X. Li, and W. Shi, “Split learning over Wireless Networks: Parallel Design and Resource Management,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 1051–1066, Feb. 2023.
  29. S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, “HiveMind: Towards Cellular Native Machine Learning Model Splitting,” IEEE J. Sel. Areas Commun., vol. 40, no. 2, pp. 626–640, Oct. 2021.
  30. Z. Lin, G. Zhu, Y. Deng, X. Chen, Y. Gao, K. Huang, and Y. Fang, “Efficient Parallel Split Learning over Resource-constrained Wireless Edge Networks,” IEEE Trans. Mobile Comput., 2024.
  31. D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the Tiger: Inference Attacks on Split Learning,” in Proc. CCS, Nov. 2021.
  32. Karimireddy, Sai Praneeth and Kale, Satyen and Mohri, Mehryar and Reddi, Sashank and Stich, Sebastian and Suresh, Ananda Theertha, “On the Convergence Properties of A K-step Averaging Stochastic Gradient Descent Algorithm for Nonconvex Optimization,” in Proc. IJCAI, Jul. 2018.
  33. H. Yu, R. Jin, and S. Yang, “On the Linear Speedup Analysis of Communication Efficient Momentum SGD For Distributed Non-convex Optimization,” in Proc. ICML, Jun. 2019, pp. 7184–7193.
  34. S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold: Stochastic Controlled Averaging for Federated Learning,” in Proc. ICLR, Apr. 2020.
  35. Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-efficient Algorithms for Statistical Optimization,” in Proc. NIPS, Jun. 2012.
  36. X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent,” in Proc. NIPS, Jun. 2017.
  37. H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan, “Perturbed Iterate Analysis for Asynchronous Stochastic Optimization,” SIAM J. Optim., vol. 27, no. 4, pp. 2202–2229, Jan. 2017.
  38. T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t Use Large Mini-batches, Use Local SGD,” in Proc. ICLR, Dec. 2019.
  39. W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint Device Scheduling and Resource Allocation for Latency Constrained Wireless Federated Learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 453–467, Sep. 2020.
  40. W. Xia, W. Wen, K.-K. Wong, T. Q. Quek, J. Zhang, and H. Zhu, “Federated-learning-based Client Scheduling for Low-latency Wireless Communications,” IEEE Wireless Commun., vol. 28, no. 2, pp. 32–38, Apr. 2021.
  41. W. Dinkelbach, “On Nonlinear Fractional Programming,” Manage. Sci., vol. 13, no. 7, pp. 492–498, Mar. 1967.
  42. D. Yue and F. You, “A Reformulation-linearization Method for the Global Optimization of Large-scale Mixed-Integer Linear Fractional Programming Problems and Cyclic Scheduling aApplication,” in Proc. ACC, Jun. 2013.
  43. R. G. Ródenas, M. L. López, and D. Verastegui, “Extensions of Dinkelbach’s Algorithm for Solving Non-linear Fractional Programming Problems,” Top, vol. 7, pp. 33–70, Jun. 1999.
  44. P. Tseng, “Convergence of A Block Coordinate Descent Method for Nondifferentiable Minimization,” J Optim Theory Appl, vol. 109, pp. 475–494, Jun. 2001.
  45. A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of Features From Tiny Images,” Tech. Rep., Apr. 2009.
  46. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to Document Recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.
  47. G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 491–506, Oct. 2019.
  48. Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy Efficient Federated Learning over Wireless Communication Networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Nov. 2020.
  49. Z. Lin, Z. Chen, Z. Fang, X. Chen, X. Wang, and Y. Gao, “FedSN: A General Federated Learning Framework over LEO Satellite Networks,” arXiv preprint arXiv:2311.01483, Nov. 2023.
  50. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-scale Image Recognition,” in Proc. ICLR, 2015.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zheng Lin (104 papers)
  2. Guanqiao Qu (9 papers)
  3. Wei Wei (424 papers)
  4. Xianhao Chen (50 papers)
  5. Kin K. Leung (65 papers)
Citations (25)
X Twitter Logo Streamline Icon: https://streamlinehq.com