Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SAEC: Scene-Aware Enhanced Edge-Cloud Collaborative Industrial Vision Inspection with Multimodal LLM (2509.17136v1)

Published 21 Sep 2025 in cs.CV and cs.AI

Abstract: Industrial vision inspection requires high accuracy under stringent resource constraints, yet existing approaches face a fundamental trade-off. Multimodal LLMs (MLLMs) deliver strong reasoning capabilities but incur prohibitive computational costs, while lightweight edge models often fail on complex cases. In this paper, we present SAEC, a scene-aware enhanced edge-cloud collaborative industrial vision inspection framework with MLLM. The framework is composed of three synergistic components: (1) Efficient MLLM Fine-Tuning for Complex Defect Inspection, (2) Lightweight Multiscale Scene-Complexity Estimation, and (3) Adaptive Edge-Cloud Scheduler. Together, these modules enable robust defect detection by tailoring multimodal reasoning to scene complexity and dynamically balancing computation between edge and cloud resources. Experimental results on MVTec AD and KSDD2 datasets demonstrate that SAEC attains 85.11% and 82.72% accuracy, surpassing Qwen by 22.1% and 20.8%, and LLaVA by 33.3% and 31.6%. It also reduces runtime by up to 22.4% and cuts energy per correct decision by 40%-74%. The code is available at https://github.com/YuHao-Tian/SAEC.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube