Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptive Guidance Semantically Enhanced via Multimodal LLM for Edge-Cloud Object Detection (2509.19875v1)

Published 24 Sep 2025 in cs.CV and cs.AI

Abstract: Traditional object detection methods face performance degradation challenges in complex scenarios such as low-light conditions and heavy occlusions due to a lack of high-level semantic understanding. To address this, this paper proposes an adaptive guidance-based semantic enhancement edge-cloud collaborative object detection method leveraging Multimodal LLMs (MLLM), achieving an effective balance between accuracy and efficiency. Specifically, the method first employs instruction fine-tuning to enable the MLLM to generate structured scene descriptions. It then designs an adaptive mapping mechanism that dynamically converts semantic information into parameter adjustment signals for edge detectors, achieving real-time semantic enhancement. Within an edge-cloud collaborative inference framework, the system automatically selects between invoking cloud-based semantic guidance or directly outputting edge detection results based on confidence scores. Experiments demonstrate that the proposed method effectively enhances detection accuracy and efficiency in complex scenes. Specifically, it can reduce latency by over 79% and computational cost by 70% in low-light and highly occluded scenes while maintaining accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.