Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

SnipSnap: A Joint Compression Format and Dataflow Co-Optimization Framework for Efficient Sparse LLM Accelerator Design (2509.17072v1)

Published 21 Sep 2025 in cs.AR

Abstract: The growing scale of LLMs has intensified demands on computation and memory, making efficient inference a key challenge. While sparsity can reduce these costs, existing design space exploration (DSE) frameworks often overlook compression formats, a key factor for leveraging sparsity on accelerators. This paper proposes SnipSnap, a joint compression format and dataflow co-optimization framework for efficient sparse LLM accelerator design. SnipSnap introduces: (1) a hierarchical compression format encoding to expand the design space; (2) an adaptive compression engine for selecting formats under diverse sparsity; and (3) a progressive co-search workflow that jointly optimizes dataflow and compression formats. SnipSnap achieves 18.24\% average memory energy savings via format optimization, along with 2248.3$\times$ and 21.0$\times$ speedups over Sparseloop and DiMO-Sparse frameworks, respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.