Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Equip Pre-ranking with Target Attention by Residual Quantization (2509.16931v1)

Published 21 Sep 2025 in cs.IR, cs.AI, and cs.LG

Abstract: The pre-ranking stage in industrial recommendation systems faces a fundamental conflict between efficiency and effectiveness. While powerful models like Target Attention (TA) excel at capturing complex feature interactions in the ranking stage, their high computational cost makes them infeasible for pre-ranking, which often relies on simplistic vector-product models. This disparity creates a significant performance bottleneck for the entire system. To bridge this gap, we propose TARQ, a novel pre-ranking framework. Inspired by generative models, TARQ's key innovation is to equip pre-ranking with an architecture approximate to TA by Residual Quantization. This allows us to bring the modeling power of TA into the latency-critical pre-ranking stage for the first time, establishing a new state-of-the-art trade-off between accuracy and efficiency. Extensive offline experiments and large-scale online A/B tests at Taobao demonstrate TARQ's significant improvements in ranking performance. Consequently, our model has been fully deployed in production, serving tens of millions of daily active users and yielding substantial business improvements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube