Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Multi-Level Benchmark for Causal Language Understanding in Social Media Discourse (2509.16722v1)

Published 20 Sep 2025 in cs.CL

Abstract: Understanding causal language in informal discourse is a core yet underexplored challenge in NLP. Existing datasets largely focus on explicit causality in structured text, providing limited support for detecting implicit causal expressions, particularly those found in informal, user-generated social media posts. We introduce CausalTalk, a multi-level dataset of five years of Reddit posts (2020-2024) discussing public health related to the COVID-19 pandemic, among which 10120 posts are annotated across four causal tasks: (1) binary causal classification, (2) explicit vs. implicit causality, (3) cause-effect span extraction, and (4) causal gist generation. Annotations comprise both gold-standard labels created by domain experts and silver-standard labels generated by GPT-4o and verified by human annotators. CausalTalk bridges fine-grained causal detection and gist-based reasoning over informal text. It enables benchmarking across both discriminative and generative models, and provides a rich resource for studying causal reasoning in social media contexts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.