Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Low-Rank Adaptation of Evolutionary Deep Neural Networks for Efficient Learning of Time-Dependent PDEs (2509.16395v1)

Published 19 Sep 2025 in stat.ML and cs.LG

Abstract: We study the Evolutionary Deep Neural Network (EDNN) framework for accelerating numerical solvers of time-dependent partial differential equations (PDEs). We introduce a Low-Rank Evolutionary Deep Neural Network (LR-EDNN), which constrains parameter evolution to a low-rank subspace, thereby reducing the effective dimensionality of training while preserving solution accuracy. The low-rank tangent subspace is defined layer-wise by the singular value decomposition (SVD) of the current network weights, and the resulting update is obtained by solving a well-posed, tractable linear system within this subspace. This design augments the underlying numerical solver with a parameter efficient EDNN component without requiring full fine-tuning of all network weights. We evaluate LR-EDNN on representative PDE problems and compare it against corresponding baselines. Across cases, LR-EDNN achieves comparable accuracy with substantially fewer trainable parameters and reduced computational cost. These results indicate that low-rank constraints on parameter velocities, rather than full-space updates, provide a practical path toward scalable, efficient, and reproducible scientific machine learning for PDEs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: